Geometric Kac-Moody Modularity
نویسنده
چکیده
It is shown how the arithmetic structure of algebraic curves encoded in the HasseWeil L-function can be related to affine Kac-Moody algebras. This result is useful in relating the arithmetic geometry of Calabi-Yau varieties to the underlying exactly solvable theory. In the case of the genus three Fermat curve we identify the Hasse-Weil L-function with the Mellin transform of the twist of a number theoretic modular form derived from the string function of a non-twisted affine Lie algebra. The twist character is associated to the number field of quantum dimensions of the underlying conformal field theory. PACS Numbers and
منابع مشابه
The two parameter quantum groups $U_{r,s}(mathfrak{g})$ associated to generalized Kac-Moody algebra and their equitable presentation
We construct a family of two parameter quantum grou-\ps $U_{r,s}(mathfrak{g})$ associated with a generalized Kac-Moody algebra corresponding to symmetrizable admissible Borcherds Cartan matrix. We also construct the $textbf{A}$-form $U_{textbf{A}}$ and the classical limit of $U_{r,s}(mathfrak{g})$. Furthermore, we display the equitable presentation for a subalgebra $U_{r...
متن کاملCase for support Unitary forms of Kac–Moody algebras and Kac–Moody groups
The proposed project is set in pure mathematics within the areas of infinite-dimensional Lie theory and geometric group theory. Its goal is to contribute to the structure theory of unitary forms (i.e., centralisers of Chevalley involutions) of Kac–Moody algebras and of Kac–Moody groups of indefinite type. The main emphasis of this project will be on finite-dimensional representations and on ide...
متن کاملAn algebraic geometric model of an action of the face monoid associated to a Kac-Moody group on its building
We described in [M1] a monoid b G, the face monoid, acting on the integrable highest weight modules of a symmetrizable Kac-Moody algebra. It has similar structural properties as a reductive algebraic monoid whose unit group is a Kac-Moody group G. We found in [M5] two natural extensions of the action of the Kac-Moody group G on its building Ω to actions of the face monoid b G on the building Ω....
متن کاملLocal geometric Langlands correspondence and representations of affine Kac - Moody algebras
متن کامل
Kac-moody Groups: Split and Relative Theories. Lattices
— In this survey article, we recall some facts about split Kac-Moody groups as defined by J. Tits, describe their main properties and then propose an analogue of Borel-Tits theory for a non-split version of them. The main result is a Galois descent theorem, i.e., the persistence of a nice combinatorial structure after passing to rational points. We are also interested in the geometric point of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004